Melting temperature of ice Ih calculated from coexisting solid-liquid phases.
نویسندگان
چکیده
We carried out molecular-dynamics simulations by using the two-phase coexistence method with the constant pressure, particle number, and enthalpy ensemble to compute the melting temperature of proton-disordered hexagonal ice I(h) at 1-bar pressure. Four models of water were considered, including the widely used TIP4P [W. L. Jorgensen, J. Chandrasekha, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys.79, 926 (1983)] and TIP5P [M. W. Mahoney and W. L. Jorgensen J. Chem. Phys.112, 8910 (2000)] models, as well as recently improved TIP4P and TIP5P models for use with Ewald techniques-the TIP4P-Ew [W. Horn, W. C. Swope, J. W. Pitera, J. C. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon, J. Chem. Phys.120, 9665 (2004)] and TIP5P-Ew [S. W. Rick, J. Chem. Phys.120, 6085 (2004)] models. The calculated melting temperature at 1 bar is T(m) = 229 +/- 1 K for the TIP4P and T(m) = 272.0 +/- 0.6 K for the TIP5P ice I(h), both are consistent with previous simulations based on free-energy methods. For the TIP4P-Ew and TIP5P-Ew models, the calculated melting temperature is T(m) = 257.0 +/- 1.1 K and T(m) = 253.9 +/- 1.1 K, respectively.
منابع مشابه
The Melting Lines of Model Systems Calculated from Coexistence Simulations
We have performed large-scale molecular dynamics simulations of coexisting solid and liquid phases using 4e(s/r) interactions for n59 and n512, and for Lennard-Jones systems, in order to calculate the equilibrium melting curve. The coexisting systems evolve rapidly toward the melting temperature. The P – T melting curves agree well with previous calculations, as do the other bulk phase properti...
متن کاملThe melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
In this work we present an implementation for the calculation of the melting point of ice I(h) from direct coexistence of the solid-liquid interface. We use molecular dynamics simulations of boxes containing liquid water and ice in contact. The implementation is based on the analysis of the evolution of the total energy along NpT simulations at different temperatures. We report the calculation ...
متن کاملShock properties of H2O ice
[1] To understand the mechanics and thermodynamics of impacts on, and collisions between, icy planetary bodies, we measured the dynamic strength and shock states in H2O ice. Here, we expand upon previous analyses and present a complete description of the phases, temperature, entropy, and sound velocity along the ice shock Hugoniot. Derived from shock wave measurements centered at initial temper...
متن کاملMelting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
A method of free energy calculation is proposed, which enables to cover a wide range of pressure and temperature. The free energies of proton-disordered hexagonal ice (ice Ih) and liquid water are calculated for the TIP4P [J. Chem. Phys. 79, 926 (1983)] model and the TIP5P [J. Chem. Phys. 112, 8910 (2000)] model. From the calculated free energy curves, we determine the melting point of the prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 123 3 شماره
صفحات -
تاریخ انتشار 2005